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OPTICAL CHANNELIZER EVALUATION USING

EMPIRICAL DATA AND SIMULATION

William D. Ivancic
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Abstract The acousto-optic spectrum analyzer (Fig. 1) is based
on the Bragg interaction between light and sound in a
Westinghouse Electric Corporation Communicatiorcrystal material. An ultrasonic acoustic wave isimpressed
Division under NASA contract NAS3-25865 developed &0n the crystal. A portion of a laser beam passing through
proof-of-concept (POC) multichannel demultiplexerthe Bragg cell is diffracted at an angle proportional to the
implemented as an acousto-optic radiofrequency (RF}F appliedtothe acoustic transducer. The diffracted beam
spectrum analyzer. A detailed analysis of the experimentid amplitude modulated and frequency and phase shifted
results indicate that the expected degradation caused by the Bragg interaction with the intensity proportional to
the acousto-optical channelizer is approximately 2.0-dehe power ofthe applied RF signal. For heterodyne detection
degradation at 19 bit-error-rate (BER) and 3.0-dB Wwith a modulate reference, the output of the signal at the
degradation at ¥8BER. This degradation may be quite photo-detector is at a common intermediate frequency
acceptable when considering the excellent volume, masé$f) and proportional to the amplitude of the communication
and power characteristics of acousto-optical channelizingggnal. Thus, the multichannel demultiplexer (MCD)
relative to other technologies. In addition, systerperforms both the demultiplexing and downconversion of
performance can be greatly improved by using digitalhe composite RF signal.
pulse shaping in the modem and increasing the channel The acousto-optic channelizer was designed to allow
spacing from 40 to 45 kHz for 64-kbps quadrature phasé4 kbps of offset quadrature phase-shift keying (OQPSK)

shift keying (QPSK) modulation. modulated information to be frequency stacked with
40-kHz channel spacing. The modem filters that were
Westinghouse Acousto-Optic Channelizer initially specified and simulated by Westinghouse were

6-pole, 16-kHz Butterworth filters. These modem filters
are far from an optimal choice for bandwidth and power
Westinghouse Electric Corporation Communicatiorefficient modulation. In addition, because of technical
Division under NASA contract NAS3-25865 developed adifficulties at the onset of the contract that strained available
proof-of-concept (POC) multichannel demultiplexerfunds, NASA and Westinghouse decided to allow testing
implemented as an acousto-optic radiofrequency (RRyith agovernment-supplied modem, Comstream CM421.
spectrum analyzer that demonstrated the capability afhis modem is capable of generating uncoded 64-kbps
demultiplexing 1000 low data rate frequency-division,QPSK modulation signals at a 70-MHz IF within a
multiple-access (FDMA) uplinks.The multichannel 50-kHz bandwidth. Both NASA and Westinghouse were
demultiplexer was implemented as an acousto-optic Rémable to obtain detailed information on the internal data
spectrum analyzer utilizing heterodyne detection with dilters used in the modem. However, NASA subsequently
modulated reference. Demodulation was performed usirigarned that the data filter for the 64-kbps QPSK mode is
a commercial demodulator. A photo-detector was placesl 16-kHz equalized 6-pole, Butterworth filter (6-pole,
at the focal point of the channel of interest and the sign@utterworth filter at one-half the symbol rate). Thus, the
fed into the commercial demodulator to fully characterizeyverall Westinghouse testing utilized suboptimal filtering
the effect that the optical demultiplexer has on amodulateghd mismatch between the commercially available modem
signal such as quadrature phase-shift keying (QPSK). and the optical channelizer. Figure 2 shows the basic test
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setup of BER testing. Only one adjacent channel wascreases the resolution of the phase measurement at the

implemented for adjacent channel testing. expense of bandwidth resolution.
The AM envelope modulation technique has many
Westinghouse Experimental Results sources for measurement errors: detector delay variation

versus power level, incidental phase modulation produced
The Westinghouse measured experimental resultsy the amplitude modulation, RF source phase noise, and

are shown in figure 3. Because of the mismatch betweeampedance mismatch. The individual error components
the Comstream modem and the optical channelizer, produced by these sources are generally in the tens of
series of BER measurements were taken to establishranoseconds. The error source of greatest concern for our
baseline BER curve with which optical channelizer effectgurposes is caused by the detector delay variation versus
could be compared. The first measurement established tippwer. Fortunately, we desire the greatest accuracy over
modem back-to-back performance. This curve showshe center of the channel where the gain is maximum and
approximately 1.75-dB degradation from theory andgives minimum measurement error. When the channel is
1.25-dB worse performance than specified by the moderattenuated because of the filtering, the group delay is of
manufacturer. This may be the result of miscalibrationlittle concern.
The second curve includes the 16-kHz transmit filter  For this communication system, the symbol rate is 32
between the modulator and demodulator and no adjacekHz giving a symbol time of 31.7@s. A 1- to 2ps
channels. An additional 4-dB degradation results fromaccuracy is sufficient and is readily obtainable over the
this filter mismatch. The 3 additional curves have themain lobe of the filter.
optical channelizer inserted between the 16-kHz transmit  The gain-phase measurement test setup is shown in
filter and the demodulator. The channelizer degrades thiggure 5. A synthesized signal generator is used to create
system performance by an additional 2 to 2.5 dB aa 1-kHz, 50-percent AM signal at the RF output that is
indicated by the BER curves for no adjacent channehput to the optical channelizer. The signal generator also
interference and for equal power adjacent channels. Thwovides the 1-kHz reference that is used as the reference
flair of the BER curve for a channel with 8-dB fade relativechannel input to the gain-phase meter. The output of the
to the adjacent channels indicates that the combination ofptical channelizer photodyode is amplified, filtered, and
the spatial filter (channel filter) and the receive filter in theinput to the gain-phase meter for comparison with the
demodulator cannot overcome the amount of adjacemeference input. A dc output voltage from the gain-phase
channel energy received by the desired channel. meter proportional to the gain or phase is input to a digital

multimeter. A LabView (National Instruments) program

Acousto-optical Channelizer Characterization was written to step the signal generator through the desired
frequencies, record the voltmeter readings, and store these

The Westinghouse measured gain characteristics Jpeasurements for further analysis. The relative gain and
the channelizer are shown in figure 4. These data we oup delay characteristics are easily calculated from
obtained by varying the frequency across a channel ar eSE.data.G h ical gai d del |
measuring the output spectral power off a spectrum analyze lgure 6 shows a typical gain and group delay plot.

display. This measurement technique does not aIIov-\ll— e channel in this plot is centered at 67.700 MHz.

phase or group delay data to be obtained Figure 7 shows the repeatability of the gain and group
The optical channelizer was recharacterized to obtaiﬂeIay measurements. Three separate gain and phase plots

gain and group delay information that could then be use[?r the sgr_ne c?}gnnel centefridfat 78.000 MH.Z are overlalg.
in simulation of the communication system. Because glgure IS a histogram o requency point measure

; e 000 times. The mean, mode, and standard deviation of
frequency downconversion process occurs within the- . ' ’
optical channelizer, an amplitude modulation (AM) the 1000 points are - 1.017571.01868, and 0.001483

envelope modulation technique was employed Wherebg;especnvely.
the group delay measurement is obtained from the . . .
modulation envelope rather than the RF cager. Acousto-optical Channelizer Modeling

The group delay is calculated ag=T @/ ( 360X fry,)
where Ty is the group delayy is the envelope phase shift The acousto-optic channel filter was modeled in
and f, is the amplitude modulation frequency. BecauseSignal Processing Workstation (SPW) (Alta Group,
the bandwidth resolution using this technique ig, 2f Cadence, Inc.) using the arbitrary frequency domain
tradeoff is required between bandwidth resolution andjroup delay filter block and empirical data that
phase resolution. Increasing the AM frequengy, f Westinghouse and NASA compiled. Three filters were
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modeled for use inthe communication system simulationgiemodulator receive filter. The Gaussian noise
the Westinghouse channel filter with group delay set teharacteristics for a given Eb/No are calculated and
zero across all frequencies, the 66.700-MHz, NASA-averaged for each point in the eye diagram at the optimal
measured channel filter with the appropriated group delagampling frequenc§.
values included, and the 66.700-MHz, NASA-measured  The simulation blocks were implemented such that
channel filter with the group delay set to zero across athree different baseband filter types could be inserted into
frequencies (Fig. 9). The 66.700-MHz channel washe modem system. The three filters used were a 16-kHz,
chosen because it matched the basic amplitude and groggpole, unequalized Butterworth filter; a 16-kHz, 6-pole,
delay characteristics of all other channels measured arourdjualized Butterworth filter; and a 40-percent square root
70.000+ 10.000 MHz. Setting the group delay to zero inraised cosine (RRC) filter. The filter response, group
the 66.700 MHz filter allowed a comparison of the samelelay, and optimally sampled eye diagrams at the
gain-shaped filter with and without group delay effects. demodulator without the acousto-optical channelizing
filter present are shown in figures 13, 14, and 15 for each
Simulation Results filter type. Figure 16 shows the result of adding the
acousto-optic channelizing filter between the modulators
To understand the difference in degradation causednd demodulator. These eye diagrams are taken with no
by the channelizer and that caused by the modulatioadjacent channels.
filtering and filter mismatches of the experimental setup,  Figures 17, 18(a), and 18(b) show eye diagrams out
a system simulation was performed for QPSK modulatiomf the modulator with a 40-percent RRC transmit filter and
through the channelizer using SPW. The basic SPWhe spectral response of the signal at the input and output
simulation configuration is shown in figure 10. Threeof the channelizer filter for various adjacent channel
modulators are stacked side by side with the middlénterference levels. These diagrams clearly show the signal
modulator at baseband and the two adjacent channeaiggradation caused by the channelizer filter and the adjacent
spaced at +/- the channel width (40 kHz for most testskhannels. The eye diagrams indicate that there should be
The adjacent channels are multiplied by a gain factor tdittle variation in performance for no adjacent channel and
either amplify or attenuate these channels. For —100 di&hen adjacent channels are of equal power to the desired
gain, the adjacent channels are basically nonexistenthannel. However, the eye diagrams indicate that the
Positive gain values simulate a fade condition on thgystem begins to degrade when the desired channel
middle channel measured for BER performance. Testsxperiences a5-dB fade and has unacceptable performance
were performed with and without the acousto-opticalata 10-dB fade. The BER curves in figure 19 validate this.
channelizer filter present. Note the system performance is nearly identical for equal
Figure 11 shows the QPSK modulator configurationpower adjacent channels at 40-kHz spacing and a 10-dB
Random data are created independently for the in-phagseded channel at 45-kHz spacing. Thus, system
and quadrature channels and passed through the basebpe#formance can be greatly improved by increasing the
transmit filter. The in-phase and quadrature channels akhannel separation and allowing the optical channelizer to
combined into a complex representation and then shiftesimply perform the spatial channel separation function
in frequency. whereas the transmit/receive filter pair performs the match
The demodulator is shown in figure 12. The receivéfiltering function.
filters are identical the transmit filters in the modulator. ~ The BER curves in figure 20 show the results of
The impulse train creates a pulse every eight samples adding the acousto-optic channelizing filter between the
the modem is configured to operated on eight samples patodulator and demodulator for various transmit/receive
symbol. The delay unit is adjusted to obtain the optimafilters with no adjacent channels present and with equal
sample period. power adjacent channels. The results indicate that the
Because of the tremendous speed advantage ovefiannelizing filter adds approximately 2.0-dB degradation
Monte-Carlo techniques, BER calculations were obtaineat 165 BER and 3.0-dB degradation atdBER for each
using a semi-analytical technique. Energy per bit/ofthe modem filters. In addition, little degradation occurs
normalized noise power (Eb/No) values can be obtained ifor equal power adjacent channels.
a few minutes rather than hours or days for BER values of  The BER curve in figure 21 shows that channelizer
106 or greater. This technique may be applied to lineategradation obtained from the simulation results of the
systems with noise that can be characterized as averag@SA-measured optical channelizer and the Westinghouse
white Gaussian noise (AWGN). The general concept foexperimental results closely match. For clarity, only the
this semi-analytical technique is to analyze the eye diagrame-kHz  unequalized low-pass transmit/receive filter
out of the sample and hold circuitry following the simulations are shown.
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Fig. 14—16-kHz 6-pole equalized Butterworth filter.
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